How Big are 1024 bit RSA Keys


The RSA algorithm is an asymmetric key cipher using a "public key" and a "private key". The parameters that describe the RSA public and private keypair are selected to satisfy the fundamental strict dependency requirements of the RSA cipher, enabling either key to decrypt content encrypted with the other key.

The "public key" actually represents a pair of parameters (numbers): a Modulus and a public exponent E. The public exponent is usually chosen to be relatively small (often 3 bytes). The size of the Modulus in bits is referred to as the "key size". A Modulus of size 128 bytes represents a "1024 bit RSA key".

The "private key" is usually described as a number pair consisting of the same key Modulus and a private exponent D. D is usually chosen to be about the same size as the modulus (~128 bytes). Random selection of Modulus, E and D starts by random selection of two large prime numbers.

The sample key-data below shows typical prime numbers P, Q, the Modulus and Exponent displayed as big-endian ordered byte arrays followed by the corresponding decimal integer number. The product P*Q below is calculated to verify that P*Q = Modulus using java.math.BigInteger class methods.

Generation of RSA signatures or RSA encryption first typically requires formatting the data to be signed or encrypted into a PKCS #1 Signature (Type 1) or Encryption (Type 2) data block. The data block is the same size as the key modulus. Then exponentiation of the data with D (for RSA signatures) or E (for RSA encryption) (modulo Modulus) is performed producing the digital signature or RSA encrypted data.

P  [64 bytes/512 bits]
[FA, F7, 2D, 97, 66, 5C, 47, 66, B9, BB, 3C, 33, 75, CC, 54, E0, 71, 12, 1F, 90,
 B4, AA, 94, 4C, B8, 8E, 4B, EE, 64, F9, D3, F8, 71, DF, B9, A7, 05, 55, DF, CE,
 39, 19, 3D, 1B, EB, D5, FA, 63, 01, 52, 2E, 01, 7B, 05, 33, 5F, F5, 81, 6A, F9,
 C8, 65, C7, 65]

Decimal:
13144131834269512219260941993714669605006625743172006030529504645527800951523697
620149903055663251854220067020503783524785523675819158836547734770656069477
Digits: 155


Q  [64 bytes/512 bits]
[EA, A0, F7, B0, 11, D8, 58, BC, 1F, E7, D9, EA, E6, 2B, E3, 68, 48, 39, 7A, 0C,
 16, 5D, E3, 58, 95, DB, B7, CB, E8, F0, 24, B4, 65, 62, 5A, EB, 28, 08, 79, 0A,
 30, 53, 18, C5, 36, 35, DC, 5C, F6, 66, 77, 44, F2, B4, BA, 46, CF, 30, 0A, DF,
 05, AE, 40, 23]

Decimal:
12288506286091804108262645407658709962803358186316309871205769703371233115856772
658236824631092740403057127271928820363983819544292950195585905303695015971
Digits: 155


Modulus  [128 bytes/1024 bits]
[E6, 03, BC, F9, FA, 9B, 40, 5C, D8, 51, AC, 0A, 3D, 33, F9, 12, 0C, 89, 57, E7,
 98, 25, C2, A5, BD, AE, 35, 00, 0C, 5E, 6B, 1D, 30, 21, 62, 20, 0D, D3, 56, 59,
 C2, AE, 13, 8E, FF, 1E, 6B, B3, 94, A7, 45, F0, F8, 71, B8, AF, 86, 13, 71, 10,
 6F, A0, DB, 08, 7C, 74, AC, 64, DF, 7C, 8B, 41, F3, 36, 3F, 7A, 79, 1D, 83, 3D,
 68, 02, 90, 52, 3F, C7, 4D, 0B, 99, 26, 07, 44, 68, 1B, FE, 8C, C7, 0B, 67, 7D,
 15, D1, 54, 6A, 34, F2, F4, D3, 61, A4, 3F, ED, 28, 55, 52, 39, 47, 14, 20, E4,
 1A, 82, E7, 4D, 57, 69, 82, CF]

Decimal:
16152174667064029642647365822885998430666314431815268152405470907824573659036629
72483772980826569393306732864932303362619914669385966910731129686267107921489042
39628873374506302653492009810626437582587089465395941375496004739918498276676334
238241465498030036586063929902368192004233172032080188726965600617167
Digits: 309


Exponent = [01, 00, 01]

Decimal:
65537
Digits: 5


P*Q
16152174667064029642647365822885998430666314431815268152405470907824573659036629
72483772980826569393306732864932303362619914669385966910731129686267107921489042
39628873374506302653492009810626437582587089465395941375496004739918498276676334
238241465498030036586063929902368192004233172032080188726965600617167


Michel I. Gallant
JavaScience Consulting
neutron@istar.ca